WU \#23

Math 58B, Spring 2023

Thursday, April 20, 2023

Your Name: \qquad
Names of people you worked with: \qquad

1. Are you getting enough sleep?
2. After this class, what (if any) kind of math are you looking forward to learning more about?
3. Consider a sample of 15 books (the first 5 observations are shown here). Given the regression of weight (grams of book) on volume $\left(\mathrm{cm}^{3}\right)$ and cover (hardback or paperback), interpret the two coefficients below (0.718 and -184.05).
```
## volume weight cover
## 1 885 800 hb
## 2 1016 950 hb
## 3 1125 1050 hb
## 4 239 350 hb
## 5 701 750 hb
allbacks %>%
    lm(weight ~ volume + cover, data = .) %>%
    tidy()
```

\#\# \# A tibble: 3 x 5
\#\# term estimate std.error statistic p.value
\#\# <chr> <dbl> <dbl> <dbl> <dbl>
\#\# 1 (Intercept) 198. 59.23 .340 .00584
$\begin{array}{lllll}\text { \#\# } 2 \text { volume } & 0.718 & 0.0615 & 11.7 & 0.0000000660\end{array}$
\#\# 3 coverpb -184. $40.5 \quad-4.550 .000672$

Solution:

3. Three important things to keep in mind:

- The model describes the line (the prediction or the average) and does not describe the points (individual observations).
- Be very careful to avoid any causal language (like "change" or "increase").
- The interpretation of the coefficients is while keeping the other variable constant.
- 0.718 Keeping cover type constant, books with one additional cm^{3} of volume will be predicted to be 0.718 g heavier than books without one additional cm^{3} of volume.
- -184.05 Keeping volume constant, hardback books are predicted to weight 184.05 g more than books with paper backs.

