WU #22

Math 58B, Spring 2023

Tuesday, April 18, 2023

Your Name:

Names of people you worked with: ____

- 1. What is your favorite book of all time?
- 2. What is the hardest topic that will be on next week's exam?
- Here we will work with one of the Rossman/Chance applets. Find the applet here: http://www.rossma nchance.com/applets/2021/regshuffle/regshuffle.htm
 Set up the applet in the following way:
- Click on "Design Population" (also, select "Bivariate" just below "Design population")
- Change the population slope to equal 1
- Click on "Create Population"
- Click on "Show Sampling Options"
- Change the sample size to 15
- Take 500 samples from the population
 - a. What is the SE for the slope statistic?
 - b. (Using the answer to part a., but nothing about the applet beyond that.) Let's say you actually have a dataset (size n = 15) from the same population. If the sample you took had given you a $b_1 = 0.3$, what would your t score be? And would you reject $H_0: \beta_1 = 0$ with that t score?
 - c. Was it reasonable of me to suggest that you might have gotten a sample (from the population as set above) with $b_1 = 0.3$? Explain.

3. Solution:

- a. The sampling distribution of b_1 seems to have a SE of approximately 0.30.
- b. If $b_1 = 0.3$, then the T score would be:

t score =
$$\frac{b_1 - 0}{SE} = \frac{0.3 - 0}{0.3} = 1$$

We would not reject $H_0: \beta_1 = 0$ with a t score = 1.

c. The sampling distribution of b_1 seems to range from about 0 to about 2.0, so a value of $b_1 = 0.3$ is not impossible. However, if the true $\beta_1 = 1$, then the range of values for the majority of b_1 values is (0.4, 1.6). So $b_1 = 0.3$ would be unusual from this population.