WU \#11 - Math 58B, Spring 2023

Tuesday, Feb 21, 2023

Your Name: \qquad
Names of people you worked with: \qquad

1. Mountains or beach?
2. What is the difference between a Z score and Z^{*} ?
3. You are trying to convince your college to offer more vegetarian options at mealtime, and you believe that 40% of students are vegetarians. The college says they disagree, and they won't change the offerings unless you can convince them that more than 35% of the student body is vegetarian.
Let's say it is a one sided test with level of significance of 0.1 . Also, assume that the sample size will be big enough so that the central limit theorem holds. Start by suggesting a sample size of 50 people.
a. What are the null and alternative hypotheses?
b. What is the formula for the Z-score which will assess whether or not you reject H_{0} ?
c. What is the Z^{*} value above which you will reject H_{0} ? (If you draw the picture, I'll tell you the number.)
d. What \hat{p} do you need to get to reject H_{0} (with $\left.\mathrm{n}=50\right)$?
e. If, in fact, the true proportion of vegetarians is $p=0.4$, what is the probability that you will reject? (Again, if you can draw the correct picture, I'll tell you the number.)
f. What is your power?
g. What would you do here to increase your power? Is your solution always feasible in other experiments?

Solution:

a. $H_{0}: p=0.35, H_{a}: p>0.35$
b.

$$
Z=\frac{\hat{p}-p}{\sqrt{p \cdot(1-p) / n}}=\frac{\hat{p}-0.35}{\sqrt{0.35 \cdot 0.65 / 50}}
$$

c.

```
xqnorm(0.9, mean = 0, sd = 1)
##
## If X ~ N(0, 1), then
## P(X <= 1.281552) = 0.9
## P(X > 1.281552) = 0.1
##
```


\#\# [1] 1.281552
d.

$$
\frac{\hat{p}-0.35}{\sqrt{0.35 \cdot 0.65 / 50}}>1.28 \rightarrow \hat{p}>0.436
$$

e.

```
1 - xpnorm(0.436, mean = 0.4, sd = sqrt(0.4*0.6/50))
```

\#\#
\#\# If $\mathrm{X} \sim \mathrm{N}(0.4,0.06928)$, then
\#\# $P(X<=0.436)=P(Z<=0.5196)=0.6983$
\#\# $P(X>0.436)=P(Z>0.5196)=0.3017$
\#\#

\#\# [1] 0.3016659
f. With 50 observations, there is only a 0.3 probability (power) that the random sample would reject H_{0} even if 40% of students were truly vegetarians.
g. To get to a higher power, more observations need to be sampled. That isn't always possible because often collecting data is expensive and time consuming.

Questions you should be able to answer:

- Why is p used in the denominator of the Z-score (instead of \hat{p}) ?
- Why is $p=0.35$ instead of $p=0.4$ in H_{0} ?
- Why is the alternative direction $>$ instead of $<$?
- Why is the $\operatorname{xpnorm}()$ in part (e) centered at 0.4 with a SD of $\sqrt{0.4 \cdot 0.6 / 50}$?
- Is power always positively related to sample size? Why?

